Internship Report **Abstract.** In this project, we tried to develop a plugin to obfuscate images to enhance face privacy on social media. The main approach is to perform an adversarial attack so that the resulting images are wrong classified or detected by systems while the face still looks like the original one. Keywords: Adversarial Attack · Face privacy #### 1 Introduction Facial image data is incredibly valuable and sensitive because it is key to your identity. It is used to identify you in many critical applications like smile-to-pay [1] and facial recognition shoplifter detection[2]. The fear is that detailed profiles of yourself may be created if your data gets in the wrong hands. So, your face data must be changed in a way that facial recognition systems can not be trained on it. However, the image must be still represent the content it is intended to have. Therefor, we choose to perform an adversarial attack. Moreover, our attack must be able to do well in black-box setting at the end. #### 2 Related Work Many attacks have been proposed on attacking facial recognition models like adversarial attacks using gradient estimation [4] Evolutionary methods [3] generative networks [7] as well as on attacking facial detection models [5]. #### 3 Enhancing Face Privacy In order to fool the recognition systems, there are two approaches we can take: fooling face detection and fooling face recognition. Face detection is proposing areas in the image that contains a face and face recognition is classifying the face to the right person. At first, we try to attack face detection. #### 3.1 Attacking Face Detection In order to create adversarial examples we use the Projected Gradient Descent [8]. We defined a loss function and computed the gradient of loss function w.r.t the input and update the example using the gradient direction. The initial loss function was: $$Loss = \sum_{b \in boxes} Score_b * (sign(d_b - t))$$ (1) where d is the distance from the real face position and t is a threshold. The real face was successfully undetected by the local model but we observed that fake face detection boxes had small areas which makes it unreasonable. So we changed the loss function to: $$Loss = \sum_{b \in boxes} Score_b * Surface_b * (sign(d_b - t))$$ (2) where surface is surface of proposed area for a face. Using this loss function we were able to have fake detection with big enough boxes. This attack is targeted since not only it lowers the probability of an are containing a face, it also generates some fake proposals with reasonable sizes. Unfortunately, this attack does not seem to be transferable. Fig. 1. Comparing unperturbed an perturbed images for Attack on Face Detection #### 3.2 Attacking Face Recognition We use FaceNet[9] to embed faces in a vector, then dot product means similarity. So, we perform adversarial attack on FaceNet so that the victim will be recognized as similar to target. The percie algorithm is: - 1- All faces in the image are detected and cropped and resized to 160*160 (Embedding model input size). (Using SSD Mobilenet from Face-API.js) - 2- For each face distance (dot product of embeddings) to potential victims are computed and closest victim is chosen. (Embedding computed using FaceNet) - 3- Projected Gradient Descent method with momentum and input diversity is applied to the objective function which is average of dot product of embeddings. - 3-1 Input is resized to rnd*rnd which rnd is a random number uniformly sampled from [135,160] and then it is padded to 160*160 and rescaled image is not in center necessarily. The new image is chosen with probability of 0.9 otherwise original image is used [10]. (Input Diversity) - 3-2 The image values are normalized to [-1,1] and a random uniform noise is added. Then we compute embeddings and do L2 normalization. - 3-3 We compute objective function which is average of dot product of image embeddings with victim embeddings. - 3-4 We compute gradient of objective function w.r.t. input image then we add the gradient to previous gradient multiplied to 0.9 [6]. - 3-5 We use Gradient Sign Method to get an adversary and clip it to L-infinity bound. We repeat this process to certain number of times [8]. (Projected Gradient Descent) #### Pseudo code ``` ObjectiveFunction(imageInput) { With probability 0.1 resize image to random*random (random uniformly from [135,160]) and do a random padding Scale imageInput to [-1.1] Add randomUniform noise between [-1e-2, 1e-2] imageInput Get imageInput Embedding L2_normalize the Embedding ``` ``` 4 Return mean of dot product of victimEmbeddings and Embeddings // must be maximized oneStepAttack(image, grad) { noise = gradient of objective w.r.t. image // div on L2 norm noise = noise/ mean(|noise|) // momentum noise = grad * 0.9 + noise \ensuremath{//} after this, we apply sign on noise, so it will be normalized let adv = image + sign(noise) * 1.0 Clip image to lower bound and upper bound return adv, noise } let input = imageBatch.toFloat(); lowerBound = image - eps , clipped to 0-255 upperBound = image + eps , clipped to 0-255 grad = zeros for (i = 0; i < maxIter; i++) {</pre> Res = oneStepAttack(input, grad); input = res[0]; grad = res[1]; adversarial = input.toInt(); ``` #### Diagrams #### References - $1. \ https://www.theguardian.com/world/2019/sep/04/smile-to-pay-chinese-shoppers-turn-to-facial-payment-technology (CSRF)$ - 2. https://www.cnet.com/news/with-facial-recognition-shoplifting-may-get-you-banned-in-places-youve-never-been/(CSRF) - 3. Alzantot, M., Sharma, Y., Chakraborty, S., Zhang, H., Hsieh, C.J., Srivastava, M.: Genattack: Practical black-box attacks with gradient-free optimization (2018) - 4. Bhagoji, A.N., He, W., Li, B., Song, D.: Practical black-box attacks on deep neural networks using efficient query mechanisms. In: European Conference on Computer Vision. pp. 158–174. Springer (2018) - 5. Bose, A.J., Aarabi, P.: Adversarial attacks on face detectors using neural net based constrained optimization (2018) - 6. Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J.: Boosting adversarial attacks with momentum (2017) - 7. Dong, Y., Su, H., Wu, B., Li, Z., Liu, W., Zhang, T., Zhu, J.: Efficient decision-based black-box adversarial attacks on face recognition (2019) - 8. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (2018), https://openreview.net/forum?id=rJzIBfZAb - 9. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Jun 2015). https://doi.org/10.1109/cvpr.2015.7298682, http://dx.doi.org/10.1109/CVPR.2015.7298682 - 10. Xie, C., Zhang, Z., Zhou, Y., Bai, S., Wang, J., Ren, Z., Yuille, A.: Improving transferability of adversarial examples with input diversity (2018) # Face Off Report ${\it Mohammad Mahdi\ Abdollahpour,\ Alireza\ Torabian}$ September 2019 #### Notations: H: Was able to impersonate the target person M: Was able to change the identity to someone else U: The original identity is not in recognizer dataset, also we couldn't impersonate the target person . * in some cases even though we don't achieve the targets, with choosing different targets the recognizers identify different persons. \mathbf{L} : Couldn't fool the recognizer # 1 Celebrities ## 1.1 Ali Daie Furthest - Pete Sampras, Similarity: -0.250, BetaFace:UH(76)H(76) Clarifai:UUU Random - Jennifer Aniston, Similarity: 0.085, BetaFace:UUU Clarifai:UUU ${\bf Random}$ - George Robertson, Similarity: 0.083, Beta
Face:UH(77)H(80) Clarifai:UUU ## 1.2 Chris Evans Furthest - Mahathir Mohamad, Similarity: -0.409, BetaFace:MMM Clarifai:LMM Random - Spencer Abraham, Similarity: -0.112, BetaFace:MMM Clarifai:LMM Random - Michael Bloomberg, Similarity: 0.078, BetaFace:H(75)H(75)H(78) Clarifai:MMM #### 1.3 Cristiano Ronaldo Furthest - Jose Maria Aznar, Similarity: -0.256, BetaFace:LMH(76) Clarifai:LLL Random - Pervez Musharraf, Similarity: -0.242, BetaFace:MMM Clarifai:LLL Random - John Bolton, Similarity: -0.048, BetaFace:LMM Clarifai:LMM ## 1.4 Jackie Chan ${\bf Furthest} \text{ - Donald Rumsfeld, Similarity: -0.268, BetaFace:LLL Clarifai:LLL}$ Random - Julianne Moore, Similarity: -0.020, BetaFace:LLL Clarifai:LLL Random - Tiger Woods, Similarity: 0.066, BetaFace:LLL Clarifai:LLL # 1.5 Kim Jong un Furthest - Trent Lott, Similarity: -0.301, BetaFace:UUU Clarifai:UUU Random - Fidel Castro, Similarity: -0.067, BetaFace:UUU Clarifai:UUU Random - Joschka Fischer, Similarity: 0.064, BetaFace:UUU Clarifai:UUU ## 1.6 Robert Downey Furthest - Joschka Fischer, Similarity: -0.268, BetaFace:MMM Clarifai:LLM Random - Arnold Schwarzenegger, Similarity: 0.130, BetaFace:LLH(80) Clarifai:LLH Random - Winona Ryder, Similarity: -0.137, BetaFace:LLL Clarifai:LLL #### 1.7 Scarlet Johansson $\mathbf{Furthest}$ - Jean Chretien, Similarity: -0.278, BetaFace:LMM Clarifai:MMM Random - Trent Lott, Similarity: -0.035, BetaFace:LLM Clarifai:LLM ${\bf Random}$ - Mohammed Al-Douri, Similarity: -0.191, BetaFace:LLL Clarifai:LMM # 1.8 Taylor Swift Furthest - Jeremy Greenstock, Similarity: -0.240, BetaFace:UUU Clarifai:LLL Random - George W Bush, Similarity: -0.128, BetaFace:UUU Clarifai:LML Random - Paul Bremer, Similarity: -0.041, BetaFace:UUU Clarifai:LLL # 1.9 Trump Furthest - Hamid Karzai, Similarity: -0.316, BetaFace:LMH(78) Clarifai:L- Random - Mahathir Mohamad, Similarity: -0.158, BetaFace:MMM Clarifai:— ${\bf Random}$ - Hugo Chavez, Similarity: 0.014, Beta
Face:LH(78)H(80) Clarifai:— ## 1.10 Vladimir Putin Furthest - Abdullah Gul, Similarity: -0.256, BetaFace:LMM Clarifai:LLM Random - Hugo Chavez, Similarity: 0.184, BetaFace:LLL Clarifai:LLL Random - Hamid Karzai, Similarity: -0.114, BetaFace:LMM Clarifai:LLM # 2 Famous ## 2.1 Ian Goodfellow Furthest - Kofi Annan (BetaFace: Y), Similarity: -0.283, BetaFace: UUU Clarifai: UUU Random - Gray Davis(BetaFace:Y), Similarity: 0.093, BetaFace:UUU Clarifai:UUU ${\bf Random - Michael\ Bloomberg(BetaFace:Y),\ Similarity:\ -0.095,\ BetaFace:UUU\ Clarifai:UUU\ Cla$ ## 2.2 Max Amini Furthest - Vicente Fox(BetaFace:Y), Similarity: -0.322, BetaFace:UUU Clarifai:UUU Random - Jiang Zemin(BetaFace:Y), Similarity: -0.070, BetaFace:UUU Clarifai:UUU Random - Renee Zellweger(BetaFace:Y), Similarity: -0.210, BetaFace:UUU Clarifai:UUU # 2.3 Amy tan Furthest - Britney Spears, Similarity: -0.331, BetaFace:LLL Clarifai:UUU Random - Jack Straw, Similarity: -0.067, BetaFace:LLL Clarifai:UUU ${\bf Random}$ - Ricardo Lagos, Similarity: -0.026, BetaFace:LLM Clarifai:UUU ## 2.4 Hamad bin Khalifa Al Thani, Furthest - Lance Armstrong, Similarity: -0.326, BetaFace:LMM Clarifai:UUU Random - Halle Berry, Similarity: 0.114, BetaFace:LLM Clarifai:UUU Random - Naomi Watts, Similarity: -0.161, BetaFace:LLL Clarifai:UUU ## 2.5 Ko Un Furthest - Bill Clinton(BetaFace:Y), Similarity: -0.235, BetaFace:UUU Clarifai:UUU Random - Julianne Moore(BetaFace:Y), Similarity: 0.018, BetaFace:UUU Clarifai:UUU ${\bf Random}$ - George W ${\bf Bush}({\bf BetaFace:Y}),$ Similarity: 0.200, BetaFace:UUU Clarifai:UUU # 2.6 Philip roth Furthest - Norah Jones, Similarity: -0.299, BetaFace:LLL Clarifai:UUU Random - David Beckham, Similarity: 0.046, BetaFace:LLL Clarifai:UUH Random - Paul Bremer, Similarity: -0.028, BetaFace:LLL Clarifai:UUU ## 2.7 Reza Ghoochan Nejhad ${\bf Furthest} \ - \ {\bf Tom} \ {\bf Daschle} ({\bf BetaFace:Y}), \ {\bf Similarity:} \ -0.331, \ {\bf BetaFace:UUU} \ {\bf Clarifai:UUU}$ ${\bf Random - Rudolph\ Giuliani (BetaFace: Y),\ Similarity:\ -0.097,\ BetaFace: UUU\ Clarifai: UUU Clarifai:$ Random - Nestor Kirchner(BetaFace:Y), Similarity: 0.055, BetaFace:UUU Clarifai:UUU #### 2.8 Simin daneshvar Furthest - Winona Ryder(BetaFace:Y), Similarity: -0.188, BetaFace:UUU Clarifai:UUU Random - Junichiro Koizumi(BetaFace:Y), Similarity: 0.105, BetaFace:UUU Clarifai:UUU Random - Kofi Annan (BetaFace: Y), Similarity: 0.138, BetaFace: UUU Clarifai: UUU ## 2.9 Steve Toltz Furthest - John Snow(BetaFace:N), Similarity: -0.341, BetaFace:UUU Clarifai:UUU ${\bf Random}$ - Ariel Sharon (BetaFace:Y), Similarity: 0.113, BetaFace:UUU Clarifai:UUU Random - Joschka Fischer(BetaFace:Y), Similarity: -0.144, BetaFace:UUU Clarifai:UUU # 2.10 Yoshua Bengio Furthest - Tiger Woods, Similarity: -0.254, BetaFace:UUU Clarifai:UUU Random - Julie Gerberding(BetaFace:N), Similarity: -0.003, BetaFace:UUU Clarifai:UUU Random - Roh Moo-hyun(BetaFace:Y), Similarity: -0.035, BetaFace:UUUClarifai:UUU # 3 Not Famous ### 3.1 Joxan Jaffar Furthest - Richard Myers(BetaFace:Y), Similarity: -0.209, BetaFace:UUU Clarifai:UUU Random - Guillermo Coria(BetaFAce:Y), Similarity: 0.028, BetaFace:UUH(75) Clarifai:UUU $\textbf{Random} \text{ - Jiang Zemin} (\text{BetaFace:Y}), \text{ Similarity: 0.418}, \text{ BetaFace:H} (88) \\ \text{H} (87) \\ \text{H} (88) \text{ Clarifai:UUU} \\ \text{U} (88) \\ \text{Clarifai:UUU} \text{Clarifai:$ ## 3.2 Mohammad Reza Meybodi Furthest - Carlos Moya(BetaFace:Y), Similarity: -0.237, BetaFace:UUU Clarifai:UUU Random - Kofi Annan, Similarity: 0.266, BetaFace:UH(76)H(79) Clarifai:UUU Random - Pervez Musharraf (BetaFace:Y), Similarity: 0.400, BetaFace:H (80) H (82) H (85) Clarifai:UUU #### 3.3 Ulrike Grossner Furthest - Jack Straw(BetaFace:Y), Similarity: -0.309, BetaFace:UUU Clarifai:UUU Random - Hans Blix(BetaFace:Y), Similarity: -0.052, BetaFace:UUU Clarifai:UUU Random - John Snow(BetaFace:N), Similarity: -0.138, BetaFace:— Clarifai:UUU #### 3.4 Mehmet Fatih Yanik Furthest - Bill Simon(BetaFace:N), Similarity: -0.288, BetaFace:— Clarifai:UUU Random - Joschka Fischer (BetaFace:Y), Similarity: 0.107, BetaFace:H(81)H(85)H(86) Clarifai:UUU Random - Guillermo Coria(BetaFace:Y), Similarity: -0.070, BetaFace:UH(79)H(77) Clarifai:UUU #### 3.5 Brian Lim Furthest - David Beckham, Similarity: -0.294, BetaFace:UH(75)H(78) Clarifai:UUU Random - Jiang Zemin (BetaFace:Y), Similarity: 0.191, BetaFace:H (81) H (87) H (86) Clarifai:UUU Random - John Snow(BetaFace:N), Similarity: -0.047, BetaFace:— Clarifai:UUU #### 3.6 Reza Shokri Furthest - Gerhard Schroeder(BetaFace:Y), Similarity: -0.352, BetaFace:UUU Clarifai:UUU Random - Paul Bremer, Similarity: -0.083, BetaFace:UH(76)H(76) Clarifai:UUU Random - Vicente Fox(BetaFace:Y), Similarity: -0.352, BetaFace:UUU Clarifai:UUU ### 3.7 Tan Eng Chye Furthest - Paul Bremer(BetaFace:Y), Similarity: -0.251, BetaFace:UUU Clarifai:UUU Random - Tiger Woods, Similarity: 0.213, BetaFace:UUU Clarifai:UUU Random - Jeremy Greenstock(BetaFace:N), Similarity: 0.012, BetaFace:UUU Clarifai:UUU ## 3.8 Vanessa Wood Furthest - Tom Daschle, Similarity: -0.272, BetaFace:UUU Clarifai:UUU Random - John Negroponte(BetaFace:Y), Similarity: -0.101, BetaFace:UUU Clarifai:UUU Random - Lance Armstrong, Similarity: 0.096, BetaFace:H(79)H(78)H(81) Clarifai:UUU #### 3.9 Helmut Bolcskei Furthest - James Blake(BetaFace:N), Similarity: -0.276, BetaFace:— Clarifai:UUU Random - Tiger Woods, Similarity: 0.115, BetaFace:UUU Clarifai:UUU Random - Jose Maria Aznar, Similarity: 0.242, BetaFace:H(83)H(85)H(86) Clarifai:UUU ### 3.10 Klaas Prussmann Furthest - David Beckham, Similarity: -0.272, BetaFace:UUU Clarifai:UUU Random - Bill Clinton, Similarity: -0.091, BetaFace:UUU Clarifai:UUU Random - Joschka Fischer, Similarity: 0.047, BetaFace:H(77)H(76)H(79) Clarifai:UUU